73 research outputs found

    Node-Centric Detection of Overlapping Communities in Social Networks

    Full text link
    We present NECTAR, a community detection algorithm that generalizes Louvain method's local search heuristic for overlapping community structures. NECTAR chooses dynamically which objective function to optimize based on the network on which it is invoked. Our experimental evaluation on both synthetic benchmark graphs and real-world networks, based on ground-truth communities, shows that NECTAR provides excellent results as compared with state of the art community detection algorithms

    Long-Lived Counters with Polylogarithmic Amortized Step Complexity

    Get PDF
    A shared-memory counter is a well-studied and widely-used concurrent object. It supports two operations: An Inc operation that increases its value by 1 and a Read operation that returns its current value. Jayanti, Tan and Toueg [Jayanti et al., 2000] proved a linear lower bound on the worst-case step complexity of obstruction-free implementations, from read and write operations, of a large class of shared objects that includes counters. The lower bound leaves open the question of finding counter implementations with sub-linear amortized step complexity. In this paper, we address this gap. We present the first wait-free n-process counter, implemented using only read and write operations, whose amortized operation step complexity is O(log^2 n) in all executions. This is the first non-blocking read/write counter algorithm that provides sub-linear amortized step complexity in executions of arbitrary length. Since a logarithmic lower bound on the amortized step complexity of obstruction-free counter implementations exists, our upper bound is optimal up to a logarithmic factor

    Nontrivial and Universal Helping for Wait-Free Queues and Stacks

    Get PDF
    This paper studies two approaches to formalize helping in wait-free implementations of shared objects. The first approach is based on operation valency, and it allows us to make the important distinction between trivial and nontrivial helping. We show that a wait-free implementation of a queue from common2 objects (e.g., Test&Set) requires nontrivial helping. In contrast, there is a wait-free implementation of a stack from Common2 objects with only trivial helping. This separation might shed light on the difficulty of implementing a queue from Common2 objects. The other approach formalizes the helping mechanism employed by Herlihy\u27s universal wait-free construction and is based on having an operation by one process restrict the possible linearizations of operations by other processes. We show that objects possessing such universal helping can be used to solve consensus

    Recoverable and Detectable Fetch&Add

    Get PDF
    The emergence of systems with non-volatile main memory (NVRAM) increases the need for persistent concurrent objects. Of specific interest are recoverable implementations that, in addition to being robust to crash-failures, are also detectable. Detectability ensures that upon recovery, it is possible to infer whether the failed operation took effect or not and, in the former case, obtain its response. This work presents two recoverable detectable Fetch&Add (FAA) algorithms that are self-implementations, i.e, use only a fetch&add base object, in addition to read/write registers. The algorithms target two different models for recovery: the global-crash model and the individual-crash model. In both algorithms, operations are wait-free when there are no crashes, but the recovery code may block if there are repeated failures. We also prove that in the individual-crash model, there is no implementation of recoverable and detectable FAA using only read, write and fetch&add primitives in which all operations, including recovery, are lock-free
    • …
    corecore